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Abstract:  The level-k model is often implemented with an assumption that individuals employ a 
fixed depth of reasoning across different games.  To study the validity of this assumption, we have 
subjects make choices in a series of games designed to identify inconsistent depth of reasoning 
without relying on the results of an econometric model.  Most subjects’ choices are not consistent 
with them having a fixed depth of reasoning even in extremely closely related games. Econometric 
analysis verifies that this result is quite robust and illustrates the nature of the inconsistency.  The 
likelihood of inconsistency increases with cognitive ability, suggesting that it is not solely due to 
confusion.  Higher optimization premiums are correlated with greater depth of reasoning, but do 
not reduce the likelihood of inconsistency per se.  We argue that depth of reasoning, like many 
other varieties of individual choice, is subject to stochastic choice.   
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“A foolish consistency is the hobgoblin of little minds …”   

Ralph Waldo Emerson, 1841 

 

1. Introduction:  Since the path-breaking work of Nagel (1995), it is well established that limited 

depth of reasoning accounts for important features of experimental data missed by models based 

on full rationality.  The level-k model, with its intuitive and tractable structure, has emerged as the 

most commonly used model of limited depth of reasoning.1  The model is based on a hierarchy of 

levels.  Level-0 individuals make decisions in a fashion that is not based on strategic 

considerations.  Level-1 individuals best respond (possibly with noise) to the distribution of 

choices by level-0 individuals, level-2 individuals best respond to the distribution of choices by 

level-1 individuals, etc.  Many papers have attempted to identify the distribution of levels (e.g. 

Stahl and Wilson, 1995; Costa-Gomes, Crawford, and Broseta, 2001; Costa-Gomes and Crawford, 

2006) or used level-k models to explain behavior in a variety of settings (e.g. Crawford and 

Irriberri, 2007; Arad and Rubinstein, 2012; Östling, Wang, Chou, and Camerer, 2011).2 

 Several recent papers have pointed out flaws in the level-k approach.3  The results of 

Georganas, Healy, and Weber (2015) are particularly germane for the work reported below.  They 

econometrically estimate each subject’s level (level 1, level 2, etc.) for two classes of games, 

undercutting games and guessing games.  Only 27% of subjects have the same estimated level for 

both classes.  They find positive evidence for consistent levels within the class of undercutting 

games but not within the class of the guessing games.  The results within classes of games are less 

convincing than the results between classes due to data limitations.4  One potential explanation for 

the observed lack of consistency is that depth of reasoning can reflect beliefs about others’ limited 

depth of reasoning rather than limits to one’s own depth of reasoning (Agranov, Potamites, 

Schotter, and Tergiman, 2012).  To the extent that different classes of games trigger different 

beliefs about others’ depth of reasoning, changes in levels across classes of games will occur.  

                                                           
1 Other models that incorporate limited depth of reasoning include Cognitive Hierarchies (Camerer, Ho, and Chong, 
2004), Noisy Introspection (Goeree and Holt, 2004), and sophisticated EWA (Camerer, Ho, and Chong, 2002). 
2 The literature on level-k models is far too large for us to list all of the papers that have used this approach.  For a 
recent summary of the literature, see Crawford, Costa-Gomes, and Irriberri (2013). 
3 Costa-Gomes and Wiezsacker (2008) and Ivanov, Levin, and Niederle (2010) demonstrate that subjects’ choices are 
not consistent with best-responding to beliefs.  Hargreaves Heap, Rojo Arjona, and Sugden (2014) show that level-0 
behavior responds to the strategic features of games when it should not.   
4 Estimated types for within-class comparisons are based on a single observation and generated using an assignment 
rule.  See their fn. 24 for discussion of this issue. 
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Another possibility is that stochastic choice creates the appearance of inconsistency.  If subjects 

are only capable of noisy optimization, their estimated levels based on observed choices can be 

inconsistent even though the same depth of reasoning is used throughout.5 

Our goal is to show that inconsistent depth of reasoning is a pervasive phenomenon that 

cannot easily be explained away.  We use an experimental design that does not solely rely on 

econometric estimation to identify inconsistency and provide strong evidence that inconsistency 

is common both between and within classes of games.  The latter point is particularly important, 

since there is no obvious reason why beliefs about others’ levels should vary much between such 

closely related games.  Fitting structural econometric models, we show that the inconsistencies 

cannot be explained by stochastic choice and are robust to a wide variety of different model 

specifications. Although the level-k model with consistent depth of reasoning does poorly in 

predicting individual behaviors, we show that it does well at predicting aggregate behaviors out of 

sample.  The level-k model remains a valuable tool for understanding aggregate behaviors, but 

must be used carefully given the pervasive inconsistency in depth of reasoning.  Depth of 

reasoning, like many other varieties of individual choice, appears to be inherently stochastic.   

 Going into detail, subjects in our experiments make a series of choices in 2-player games 

drawn from five oft-studied classes of games.  Each class consists of four games that systematically 

vary the two players’ payoffs. The first three classes (imperfect price competition, minimum effort, 

and traveler’s dilemma) yield strong predictions about how an individual who uses a consistent 

depth of reasoning (i.e. consistently being level-0, level-1, level-2, etc.) responds to changes in his 

own and his rival’s payoffs. Namely, a level-0 individual does not respond to changes in either 

player’s payoffs; a level-1 individual responds to changes in his own payoff but not to changes in 

his rival’s payoffs; and a level-2 individuals responds to changes in his rival’s payoffs but not in 

his own payoffs. Higher levels display the same alternating pattern.6  If subject’s levels are 

consistent within a class of games, we should observe a predictable pattern of changing decisions 

between different games of the same class. 

                                                           
5 See also Kline (2017).  This paper is primarily concerned with the econometrics of estimating models of strategic 
reasoning with heterogeneous types, but includes an estimation exercise using guessing game data from Costa-Gomes 
and Crawford (2006).  Level-k types are a subset of the decision rules considered by the model.  The estimation 
exercise finds that the most common type within the population uses multiple decision rules, primarily different levels 
of “unanchored reasoning” which is closely related to rationalizability.  The distinction between anchored and 
unanchored reasoning is not crucial for our non-econometric analysis of consistency. 
6 Specifically, level-3 types only respond to changes in their own payoffs, level-4 types only respond to changes in 
their rival’s payoffs, etc. 
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 We find little evidence of consistent levels within classes of games, and even less evidence 

between classes of games.  A subject is defined as “strongly consistent” with level-1 within a class 

of games if his responses to changes in his own payoffs are consistent with being level-1 and his 

responses to changes in his rival’s payoffs are not consistent with being level-2.  A subject is 

defined as “strongly consistent” with level-2 in an analogous manner.  Only about 20% of subjects 

are strongly consistent with either level-1 or level-2 for a given class of games. Virtually no 

subjects are strongly consistent with the same level for the first three classes of games.   

 The fourth class of games, Arad and Rubinstein (2012) "11 – 20” game, is included to 

make a simple point.  Individual behavior is not consistent with subjects possessing a fixed depth 

of reasoning, but aggregate behavior is in line with predictions by the level-k model.  The 11-20 

game was designed to give a specific pattern of choices that are consistent with the level-k model 

rather than Nash equilibrium.  Our 11-20 data closely resembles Arad and Rubinstein’s data, and 

is consistent with predicted pattern from the level-k model.   

The fifth and final class of games, all-pay auctions, features a large number of dominated 

strategies.  This class of games was always played at the end of the experiment (when subjects 

were tired and presumably most likely to make random errors) to test whether subject’s choices 

were consistent with a minimal level of rationality.  Subjects rarely played dominated strategies in 

the all-pay auctions.  It is unlikely that the pervasive inconsistency observed in the first three 

classes of games can be attributed to confusion or arbitrary mistakes. 

 A strength of our approach is that we do not rely on an econometric fitting exercise to 

identify inconsistency.  However, the observed inconsistencies could reflect stochastic choice (i.e. 

noisy best responses) rather than a lack of consistent depth of reasoning.  We address this issue by 

fitting several structural econometric models.  Our baseline model allows for three “consistent” 

types (level-0, level-1, and level-2) and two “inconsistent” types that mix across the three levels.  

A “pure-mixing” type randomly draws a level of reasoning (0, 1, or 2) for each game with the 

mixing probabilities fit from the data. A “semi-mixing” type is identical to a “pure-mixing” type, 

except that, rather than drawing a new level of reasoning for every game, a semi-mixing type draws 

a new level for every class of game but uses the same level within a class.  Subjects are assumed 

to use a noisy best response to their beliefs, allowing for stochastic choice.  The baseline model 

assigns 89% of the population to the two mixing types, with 43% classified as the pure-mixing 

type and 46% as the semi-mixing type.  The structural model identifies more consistency than our 
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non-econometric approach, but it remains true that the vast majority of subjects display an 

inconsistent depth of reasoning.  This finding is robust across a wide variety of alternative model 

specifications. 

 Three additional results from the econometric exercise are worth noting.  First, we show 

that behavior is sensitive to cognitive ability as measured by scores on a Raven’s Progressive 

Matrix (RPM) test.  This is not due to a change in the likelihood of being an inconsistent type.  

Rather, the probability of choosing a higher level, subject to mixing, is an increasing function of 

the RPM score.   Our result mirrors that of Gill and Prowse (2016).  Making the reasonable 

assumption that subject confusion is a decreasing function of cognitive ability, this result provides 

additional evidence that the pervasive inconsistency we observe cannot be attributed to subject 

confusion. 

Second, we find that behavior is sensitive to the optimization premium (the increased 

payoff from using a greater depth of reasoning), consistent with the work of Alaoui and Penta 

(2016).  Subject to mixing, the probability of choosing higher levels is increasing in the 

optimization premium.  This does not change our conclusion that most subjects do not use a 

consistent depth of reasoning, but indicates that a coherent pattern underlies their inconsistency. 

Finally, we find that not accounting for inconsistent depth of reasoning cause problems 

when attempting to estimate the distribution of levels (i.e. level-0, level-1, level-2, etc.).  A typical 

approach has subjects play a large number of games without feedback and then fits an econometric 

model to estimate the distribution of levels assuming that individuals use a consistent depth of 

reasoning across all games.  If subjects do not use a consistent depth of reasoning, estimation 

methods that assume consistency will confound mixing between levels with noisy optimization.  

A comparison of our baseline model with a model that only includes the three consistent types 

confirms this intuition – forcing consistency causes a modest shift in the realized distribution of 

levels (i.e. the distribution of levels after mixing has occurred) toward higher levels and a large 

increase in the estimated amount of noise in subjects’ choices. 

 The assumption that individuals use a consistent depth of reasoning is not an essential 

component of the level-k model.  For many applications, it is sufficient that the model can predict 

the aggregate distribution of choices.  We examine the predictive ability of the model by fitting 

our baseline model to four classes of games and then simulating data for the fifth class.  The model 

does well at predicting aggregate behavior in the fifth class.  This reflects a basic feature of the 
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level-k model: the ability to predict out of sample relies on the distribution of levels being stable 

across classes of games, not on individuals having a consistent depth of reasoning.  The differing 

classes of games we study are sufficiently similar that the distribution of levels changes little. 

Our primary contribution is demonstrating the pervasive presence of inconsistent depth of 

reasoning.  The inconsistency occurs even between very closely related games and cannot be 

attributed to details of the model’s specification, subject confusion, or arbitrary choices.   

The method we use for identifying inconsistencies is also an important contribution of our 

paper.  We make heavy use of econometric modeling to verify and extend the main finding, but 

our experimental design makes it possible to identify inconsistencies without relying solely on 

econometrics.  We view the two approaches as complements – we are more confident about the 

pervasiveness of inconsistent depth of reasoning because this finding is corroborated by both 

approaches. 

 The level-k model remains a valuable tool whether or not individuals employ a consistent 

depth of reasoning – our prediction exercise should make this point clear.  Features of how mixing 

occurs, such as the correlation between cognitive ability and the likelihood of mixing or the 

correlation between optimization premiums and the weight on higher levels, suggest a coherent 

reasoning process underlies the use of inconsistent depth of reasoning.  Economists have become 

comfortable with stochastic choice in individual choice (e.g. Agranov and Ortoleva, 2017), and 

choosing one’s depth of reasoning for a game is simply another example of individual choice.  

Rather than viewing inconsistent depth of reasoning as a flaw in the level-k model, we hope 

theorists and experimenters become comfortable with stochastic choice between different 

heuristics for thinking about games and devote their efforts to further exploration of what heuristics 

are being used and how individuals choose between them from game to game.    

 

2. Experimental Design and Procedures: Subjects make choices in five classes of 2-player 

games, with four games in each class, yielding a total of 20 games. Each experimental subject 

made 20 decisions, one for each game, without feedback. This section introduces the five classes 

of games, discusses predictions for these games, and describes the experimental procedures. 

 

2.1. The Classes of Games: In all 20 games, two players simultaneously choose actions from the 

discrete set X = �110, 120, 130,… , 200�. Let 	
 ∈		X and 	 ∈		X denote the actions chosen by 
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Players 1 and 2 respectively.  Within each class, C ∈ �1,2,3,4,5�,	the players’ payoffs �
� and �� 

are functions of the actions x1 and x2, conditioned on two payoff parameters, �
 and �. In each 

class of games C ∈ �1,2,3,4,5�, a game ����
, �� is defined by the payoff parameters �
 and �. 
In our experimental design the payoff parameters can take on either a high or a low values, 

specifically 20 or 80.  Within each class C ∈ �1,2,3,4,5� we consider four games, generated by 

systematically varying the values of the payoff parameters: ���20,20�, ���20,80�, ���80,20� 
and ���80,80�. Each class includes two symmetric games and two asymmetric games.   

Subject to relabeling, the payoff functions are identical for the two players: If x1 = a, x2 = 

b, α1 = c, and α2 = d, then �
���, �|�, �� = ����, �|�, ��.  Given that the payoff functions are 

basically identical for the two roles, Player 1 and Player 2, there is usually no need to distinguish 

between roles.  We therefore use the following notation which refers to a “generic” player in either 

role: πC, xi and αi refers to a player’s own payoff function, own action, and own payoff 

parameter respectively, and notation xj and αj refers to his rival’s action and payoff 

parameter respectively.  The payoff functions for all five classes are constructed such that a 

player’s payoff is a function of xi, xj, and ��, but not ��.  In other words, changing �� changes a 

player’s own payoffs, but not his rival’s payoffs, holding both players’ actions fixed. The payoff 

parameters are common knowledge. Given that payoff functions are identical for both roles, 

subject to relabeling, all subjects face the same four decisions in each class regardless of role.   

All five classes are based on games previously studied in the experimental literature.  A 

brief introduction for each class follows. 

 

Class 1: Imperfect Price Competition (Capra et al, 2002): The two players simultaneously choose 

prices. A player’s payoff equals his price if he submits the lower of the two prices.  His payoff is 

a proportion of his rival’s price if he submits the higher price, with the proportion equal to ��/100. 

In case of a tie, the player is paid his expected payoff based on a 50/50 chance of being considered 

the low price. The resulting payoff function is given by (1).   

 

� �		�
!	� , 	�|��" =
$%&
%' 	� ()		� < 	�100 + ��200 	� ()		� = 	���100 	� ()		� > 	� 
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If αi < 83/0, a player’s best response to their rival’s choice 	� is choosing 	� − 10 if 	� > 110 and 

choosing 110 if 	� = 110.  For all values of �
 and � used in our experiment, the unique Nash 

equilibrium is for both players to choose 110.  

 

Class 2: Minimum Coordination Game (Goeree and Holt, 2005): The two players simultaneously 

choose effort levels. Each player earns the minimum of the two effort levels minus a proportion of 

her chosen effort level, with the proportion equal to αi/100. The payoff function is given by (2). 

 �2�		�!	�, 	�|��" = 3(45	�, 	�6 − ��100 	� 
 

If �� < 100, a player’s best response to 	� is choosing 	�. Hence, all symmetric pairs (x1 = x2) are 

Nash equilibria of the game for all values of �
 and � used in our experiment. 

 

Class 3: Travelers’ Dilemma (Capra et al, 1999): The two players simultaneously choose claims. 

Each player earns the minimum of the two claims and an additional quantity, equal to ��, is added 

(subtracted) if hers is (not) the minimum claim. In case of a tie, there is no additional quantity to 

be paid/received. The payoff function is given by (3). 

 

�7�		�8!	� , 	�|��" = 9	� + �� ()		� < 	�	� ()		� = 	�	� − �� ()		� > 	� 
 

When �� > 10, a player’s best response to 	� is choosing 	� − 10 if 	� > 110 and choosing 110 

if 	� = 110.  Hence, mutual choice of 110 is the unique Nash equilibrium of the game for all values 

of �
 and � used in our experiment. 

 

Class 4: The “11-20” Game (Arad and Rubinstein, 2012): The two players simultaneously choose 

numbers. Each player receives her chosen number plus an additional quantity, equal to ��, if her 

chosen number is exactly 10 below her rival’s chosen number. The payoff function is given by (4). 
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�:�		�;!	�, 	�|��" = <	� + �� ()		� + 10 = 	� 		� =>ℎ@AB(C@  

 

When �� > 10, a player’s best response to 	� is choosing 	� − 10 if �� > 210 − 	� and choosing 

200 otherwise. This game has no pure strategy Nash equilibrium. 

 

Class 5: All-pay Auction (Gneezy and Smorodinski, 2006): The two players simultaneously choose 

bids. Each player gets 110 minus her bid and the high bidder receives an amount, equal to ��. In 

case of a tie, each player wins with probability one half and is paid the expected payoff.  The 

payoff function is shown in (5). 

 

�D�		�E!	� , 	�|��" = F110 − 	� + �� ()		� > 	�110 − 	� + ��2 ()		� = 	�110 − 	� ()		� < 	� 
 

For �� = 80, the best response to 	� < 180 is 	� + 10 and 110 otherwise.7  For �� = 20, a player is 

indifferent between choosing 110 and 120 if 	� = 110 and is indifferent between choosing 110, 

120, and 130 if 	� = 120.  Otherwise, choosing 110 is a strict best response.  The game �E�20,20� 
has four weak Nash equilibria, two symmetric equilibria with mutual choice of 110 or 120 and two 

asymmetric equilibria where one player chooses 110 and the other chooses 120.  Given that 110 

weakly dominates 120, the equilibrium where both players choose 110 is the most plausible.  For 

either asymmetric game, the game has a unique weak Nash equilibrium where the player with the 

low value of α chooses 110 and the player with the high value of α chooses 120.  The game �E�80,80� has no pure strategy Nash equilibrium. 

 

2.2 Theoretical Predictions: A central feature of the level-k model is that individuals who use 

level-0 reasoning are non-strategic.  They may not follow a uniform distribution as is often 

assumed, but their distribution of actions cannot be rationalized as a best response to some beliefs 

                                                           
7 For xj = 180, Player i is indifferent between choosing 190 and 110. 
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about their rivals’ behavior.  This implies that the distribution of play for level-0 individuals is 

invariant to changes in the payoff parameters. For all five classes of games, a player’s payoff is a 

function of their own payoff parameter αi but not of their rival’s payoff function parameter αj.  

Together, the preceding observations imply that the expected payoff function for a level-1 

individual takes on the following form where p(xj) is the pdf of actions for his rival. 

(6)  G���	�|��� =H ��!	� , 	�|��"I!	�"JJ
KLM

J  

This expected payoff function is a function of αi, but not αj.  Observation 1 follows. 

Observation 1: A level-1 individual will react to changes in their own payoff parameter (αi) but 

not to changes in their rival’s payoff parameter (αj). 

 A level-2 individual best responds to the choice of a level-1 individual.  For simplicity, 

assume that level-1 individuals best respond without noise to level-0 individuals.  For Classes 1 – 

3, a player’s best response function does not depend on αi for the range of αi used in our experiment.  

Since the choices of a level-1 individual only responds to his own payoff parameter, it follows that 

a level-2 individual’s choices respond to changes in her rival’s payoff parameter (αj), but not to 

changes in her own payoff parameter (αi). 

Observation 2: For Classes 1 – 3, a level-2 player will react to changes in her rival’s payoff (αj) 

parameter but not to changes in her own payoff parameter (αi). 

 For Classes 1 – 3, level-3 individuals will respond to changes in αi, but not to changes in 

αj.  This follows from Observation 2.  A level-3 individual best responds to a level-2 individual.  

A level-2 individual only responds to changes in her rival’s payoffs, which are own payoffs from 

the point of view of the level 3 individual.  Similar logic dictates that level-4 individuals will 

respond to changes in αj, but not to changes in αi, level-5 individuals will respond to changes in αi, 

but not to changes in αj, and so forth.       

Observations 1 and 2, along with their extension to level-3 and higher, imply that data from 

Classes 1 – 3 can be used to detect consistency without relying solely on econometric analysis.  If 

subjects have consistent depth of reasoning throughout the experiment, the following prediction 

applies to all subjects who are level-1 or higher.  Given that we expect few level-0 individuals, 

Prediction 1 should apply to the vast majority of subjects. 
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Prediction 1: Subjects should only respond to changes in their own payoff parameter or should 

respond only to changes in their rival’s payoff parameter.  They should not respond to changes in 

both payoff parameters.   

The values of 20 and 80 for the payoff parameters are chosen to generate large responses 

to changing the payoff parameters.  To give a sense of the likely magnitude of responses, level-k 

predictions for the different classes of games are displayed in Table 1.  The values of the payoff 

parameter of Player 1 are given by the rows and those of Player 2 by the columns.  These 

predictions are from the point of view of a Player 1, assuming that choices of level-0 individuals 

are distributed uniformly while choices for level-1 and level-2 individuals are best responses 

without noise.  Predictions with more than one number (e.g. all cells for Class 2) reflect 

indifference between two actions.  For Classes 1 – 3, a level-1 (level-2) subject is predicted to 

respond strongly to a change in their own (rival’s) payoff parameter and not respond at all to a 

change in their rival’s (own) payoff parameter. 

 

[Insert Table 1] 

 

Classes 4 and 5 are less useful than Classes 1 – 3 for detecting consistency, but are included 

in the experimental design for other reasons.  Observation 2 does not hold for Classes 4 and 5,8 

and in Table 1 we see that the predicted shifts are only weakly consistent with Observations 1 and 

2.  In practice we predict no shifts in response to changing payoff parameters for Classes 4 and 5.  

Class 4 (11 – 20 games) is useful for two reasons.  First, the game with high symmetric 

payoff parameters ��80,80� closely resembles the original Arad and Rubinstein version in that 

higher levels choose smaller numbers in an ordered way (up to level 8).  We use data from this 

game to confirm that our subjects’ behavior looks similar on aggregate to what has been observed 

for a canonical game in the level-k literature.  The failure of our subjects to exhibit consistent depth 

of reasoning is not due to behavior that is wholly inconsistent with the basic patterns of play 

predicted by level-k models and observed in earlier research.   

                                                           
8 It is trivial to construct examples for Classes 4 and 5 where a level-2 individual responds to changes in her own 
payoff parameter.  For Class 4, suppose all level-0 individuals choose 160.  Fix αj = 80, implying that a level-2 
individual best responds to a choice of 150.  If αi = 20, the best response is 200.  If αi = 80, the best response is 140.  
For Class 5, suppose all level-0 individuals choose 140.  Fix αj = 80, implying that a level-2 individual best responds 
to a choice of 150.  If αi = 20, the best response is 110.  If αi = 80, the best response is 160. 
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Second, when subjects have a low payoff parameter (αi = 20), choices smaller than 180 are 

strictly dominated by the choice of 200.  Class 5, the all-pay auction, serves a similar purpose since 

choices greater than 130 were strictly dominated for αi = 20.  Experimental subjects had already 

taken 12 choices in 12 different environments when they reached Classes 4 and 5.  If they behaved 

randomly due boredom, fatigue, or lack of salience, this should be reflected in frequent play of the 

dominated strategies in Classes 4 and 5.  Rare play of dominated strategies suggests that 

inconsistency cannot not be attributed to these causes.9  

Prediction 2:  Subjects will not use dominated strategies in Classes 4 and 5. 

 

2.3 Experimental Procedures: All sessions were run at LINEEX at the University of Valencia in 

2014 and 2015.  The subjects were undergraduate students with no previous exposure to 

experiments with any of the five classes of games.   

At the beginning of the experiment, experimental subjects were randomly allocated to one 

of two possible roles, Player 1 or Player 2. Roles were kept constant along the whole duration of 

the experiment. Table 2 summarizes the sessions that were conducted. 

[Insert Table 2 here] 

The experiments were run using paper and pencil.  After experimental subjects were seated 

and types were allocated, subjects were given an initial set of general instructions (see Appendix 

A).  We read all instructions aloud as well providing subjects with printed copies.  The general 

instructions emphasize how to read the payoff matrices, but also explained how role assignment 

would be done, how pairings would work, and how payment would be made. 

Following the general instructions, experimental subjects faced the five classes of games 

sequentially.  The order of Classes 1 – 3 was rotated across sessions, but Classes 4 and 5 were 

always the last two classes.  This was done to increase any possible effects of fatigue or boredom 

in Classes 4 or 5.  A separate packet was handed out for each class.  Each packet had a set of 

instructions along with copies of the payoff matrices for the four games.  The payoff tables show 

the payoffs for both roles, maintaining common knowledge of payoffs. 

The packet instructions included a brief recapitulation of the general instructions for the 

experiment and a detailed explanation of the game being played with an emphasis on 

                                                           
9 Some use of dominated strategies is expected in a level-k framework due to level-0 individuals. 
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understanding the payoffs.  The packet instructions stressed that the four games being played 

within a class were not the same.  For instructions after the first class of games, it was also stressed 

that the games being played changed from packet to packet.  Beyond going through the mechanics 

of reading the payoff table, the packet instructions gave a brief intuitive explanation of the structure 

of games in the class.  For example, the instructions for the minimum game stated, “… the two 

participants receive the smaller number [of the two chosen], minus a percentage (20% or 80%) of 

the number they have chosen.”   

Experimental subjects were asked to make decisions in all four games of a given class at 

the same time, and they could fill the decision sheet out for the four games in any order they 

wished. Once decisions for a given class were done, papers were collected and the packets for the 

next class were handed out, so subjects could not go back (nor forward) to a different class of 

games.  At no point did subjects receive feedback about others’ choices or outcomes of the games.  

Each payoff matrix was printed on a single sheet of paper.  Using paper and pencil rather than 

computerizing the experiment was intended to make it as easy as possible for subjects to compare 

payoff tables within a class or go back to the instructions. 

 

[Insert Figure 1 here] 

 

After all twenty games had been played, subjects took a 15 item version of Raven’s 

progressive matrices (RPM) test as a measure of cognitive ability.  This was computerized, using 

z-tree (Fischbacher, 2007), rather than run by hand.  Each item showed subjects a 3x3 matrix of 

geometric figures (see Figure 1 for an example).  They were asked to deduce what figure was 

needed to complete the sequence from a menu of eight possibilities.  Subjects were given thirty 

seconds to complete each question and were paid 0.25 euros for each item completed correctly.  

The median score was 12 out of 15 items.  The RPM test is a well-known instrument for testing 

reasoning ability.  Gill and Prowse (2016) show a positive relationship between RPM test scores 

and depth of reasoning in a level-k model.10  We administered the abbreviated RPM test to study 

whether there is a relationship between cognitive ability and consistency.   

                                                           
10 Gill and Prowse use a sixty-question version of the RPM test taken before the games.  We use a shortened version 
administered after the games.  This reflects the differing goals of the two papers – we are primarily interested in 
consistency and wanted to eliminate any possibility that the RPM test could affect behavior in the games.   
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At the end of the experiment, subjects in the Player 1 role were randomly matched with 

subjects in the Player 2 role.  They were paid based on their choices for one randomly chosen game 

out of the twenty.  We paid on one randomly chosen game to avoid any possibility of hedging.  

The payoff tables were denominated in ECU, with a conversion rate of 10 ECU = 1 euro.  The 

average duration of a session was around 90 minutes and the average payoff was about 18 – 20 

euros, including a 5 euro show-up fee. 

 

3. Experimental Results:  This section begins by confirming that our data is consistent with 

previous experiments studying these five classes of games and with the level-k model predictions 

at the aggregate level.  We then show that the individual data is largely consistent with Prediction 

2, but not Prediction 1.  The latter implies that subjects do not employ a consistent depth of 

reasoning, a finding that we confirm with formal econometric analysis in Section 4. 

3.1 Aggregate results:   Table 3 displays the average choices for all twenty games, sorted by class.  

The layout parallels Table 1, with the values of a subjects’ own payoff parameter (αi) given by the 

rows and those of his rival (αj) by the columns.  See Appendix B for a more detailed breakdown 

of subjects’ choices by class of game and payoff parameters within class. 

[Insert Table 3 here] 

Our aggregate data has the same basic patterns as previous studies using the same classes 

of games. We drew the Imperfect Price Competition game from Capra et al. (2002).  They study 

symmetric versions of the game, comparing behavior with high and low payoff parameters.  Even 

though changing the payoff parameter does not affect the Nash equilibrium, Capra et al. find that 

higher values of the payoff parameter lead to higher choices (prices).  Comparing the top left and 

bottom right corners for Class 1 in Table 3, the same pattern is observed as the distribution of 

choices shifts to the right with the higher value of α. 

Goeree and Holt (2005) use the minimum effort game to make a similar point.  They study 

symmetric versions of the game, comparing behavior with high and low payoff parameters.  

Changing the payoff parameter does not affect the set of Nash equilibrium, but Goeree and Holt 

find that higher values of the payoff parameter (costs) lead to lower choices (efforts).  Comparing 

the top left and bottom right corners for Class 2 in Table 3, the same pattern is observed as the 

distribution of choices shifts to the left with the higher value of α. 
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The story is similar for Class 3, the Traveler’s Dilemma.  Capra et al. (1999) study how 

choices (claims) depend on the reward parameter in symmetric versions of the game.  They find 

that higher values of the payoff parameter lead to lower choices.  The same pattern is seen in our 

data if the top left and bottom right corners are compared for Class 2 in Table 3.  When α is 

increased for the symmetric game, the distribution of choices shifts to the left. 

[Insert Figure 2 here] 

In the “11-20” game, as introduced by Arad and Rubinstein’s (2012), subjects chose 

integers in the interval [11,20] with a reward of 20. Arad and Rubinstein find that more than 80% 

of chosen numbers were 17 or larger, meaning that experimental subjects are at most level-3. 

Figure 2 displays the distribution of choices (scaled by a factor of 10) from Arad and Rubinstein 

(2012), together with our symmetric 11-20 games with high and low rewards. Our 11-20 game 

with high rewards is the most similar to Arad and Rubinstein’s, albeit with a lower reward (80 vs 

200, scaled).  The data from our game with high rewards is shifted to the right relative to Arad and 

Rubinstein’s data, reflecting the lower reward, but like them we see fewer choices of 200 

(equivalent to their 20) than 190 or 180 and rare choice of numbers consistent with more than 

level-3 reasoning – only 3% of our observations are smaller than 170.   

None of the preceding speaks to the issue of consistency.  Rather, the point is simply that 

there is nothing inherently unusual about our data.  Subjects respond in aggregate to changes in 

the payoff parameters in exactly the way we would expect from earlier experiments.  In the 11 – 

20 game, a game “that naturally triggers level-k reasoning,” (Arad and Rubinstein, p. 3562), our 

data has the same basic features as Arad and Rubinstein’s data.   

A different concern with our data is that a large fraction of subjects might be confused or 

inattentive and making choices randomly.  If this was the case, the problem should be especially 

severe for Classes 4 and 5 which were always played at the end of the experiment.  In the 11 – 20 

game with αi = 20, it is strictly dominated to choose a number below 180. We find that 92% of the 

choices are undominated strategies.  For Class 5, the All-pay Auction, choices greater than 130 

were strictly dominated for αi = 20.  98% of the choices are undominated.11 Even at the end of the 

experiment, most subjects’ choices are consistent with a basic level of rationality.  This implies 

                                                           
11 Choices other than 110 were strictly dominated for the low payoff parameter (αi = 20).  87% of choices were 110 
with the low payoff parameter, giving even stronger support to our conclusion that subjects displayed a basic level of 
rational choice even at the end of the experiment. 
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that subjects were paying attention and responding to the payoffs in the games rather than making 

random decisions. 

Result 1: Our data is similar to what has been observed for these classes of games in previous 

experiments.  We see little evidence of purely random choice, consistent with Prediction 2. 

Comparing Tables 1 and 3, the average changes in response to shifts in own (rival’s) payoff 

parameters are in the directions predicted for level-1 (level-2) individuals. Table 3 displays a strong 

pattern that subjects respond more strongly on average to changes to their own payoffs than 

changes to their rivals’ payoffs (the change is larger in vertical comparisons than in horizontal 

comparisons).  On average, subjects play more like level-1 than level-2 individuals, but this does 

not address the issue of consistency.  In line with the predictions shown in Table 1, the responses 

to changes in the payoff parameters are far stronger for Classes 1 – 3 than Classes 4 – 5. 

Result 2:  On aggregate, subjects respond strongly to changes in their own payoff parameter (αi) 

in Classes 1 – 3 and weakly to changes in their rival’s payoff parameter (αj).  These patterns of 

play are consistent with a level-k model with more level-1 than level-2 (or higher) individuals. 

 

3.2 Individual Level Data and Consistency:  This subsection examines reactions to changes in own 

and rival’s payoff parameters at the individual level, checking whether individuals’ choices are in 

line with Prediction 1 which would imply that subjects employ a consistent depth of reasoning.  

Recall that �� denotes a subject’s own payoff parameter and �� denotes their rival’s payoff 

parameter. Within each class of games, there are two possible shifts in αi holding αj fixed: from 

(�� = 20;	�� = 20) to (�� = 80;	�� = 20) and from (�� = 80;	�� = 80) to (�� = 20;	�� = 80).  

There are also two shifts in αj holding αi fixed: from (�� = 20;	�� = 20) to (�� = 20;	�� = 80) 

and from (�� = 80;	�� = 80) to (�� = 80;	�� = 20).    

Definition 1: A subject’s reaction to a change of their own payoff parameter (αi) is “consistent” 

with level-1 if their choice moves strictly in the predicted direction for a level-1 individual.  

Likewise, a subject’s reaction to a change of their rival’s payoff parameter (αj) is “consistent” 

with level-2 if their choice moves strictly in the predicted direction for a level-2 individual.12   

                                                           
12 Table 1 assumes a uniform distribution over actions for level-0 individuals, but for Classes 1 – 3 the specific 
distribution assumed doesn’t matter for directional predictions as long as L0 is not deterministic.  For Classes 4 and 
5, we can make a directional prediction if a shift occurs but typically expect no response to changing the payoff 
parameters as per the predictions reported in Table 1.  For these two classes, having no change in response to a change 
in your own (rival’s) payoff parameter was counted as being consistent with level-1 (level-2).  
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We now get to the central issue of the paper.  For Classes 1 – 3, having a consistent depth 

of reasoning (level-1 or level-2) implies a specific pattern of reactions to changing payoff 

parameters.  A level-1 individual should only respond to changes in their own payoff parameter 

and level-2 individuals should only respond to changes in their rival’s payoff parameter.  Within 

each class of games, a subject has two chances to be consistent with level-1 and two chances to be 

consistent with level-2.  For each subject, we compute the number of reactions consistent with 

level-1 and with level-2 within each class of games.   

Definition 2: A subject is “weakly consistent” with level-1 within a class of games if his two 

reactions to changes in his own payoff parameter are consistent with level-1.  He is defined as 

“weakly consistent” with level-2 if his two reactions to changes in his rival’s payoff parameter 

are consistent with level-2.   

Weak consistency with a specific level only requires movement in the predicted direction 

without any restrictions on the magnitude of the change and also allows for changes which are 

consistent with a different level.   

Definition 3: A subject is “strongly consistent” with level-1 within a class of games if he is weakly 

consistent with level-1 and neither of his two reactions to changes in his rival’s payoff parameter 

are consistent with level-2.  A subject is “strongly consistent” with level-2 within a class of games 

if he is weakly consistent with level-2 and neither of his two reactions to changes in his own payoff 

parameter are consistent with level-1. 

In other words, a subject is strongly consistent with level-1, for example, if he responds in 

the predicted direction for a level-1 individual to both changes in his own payoff parameter (αi) 

and does not respond to either change in his rival’s payoff parameter (αj) in the predicted direction 

for a level-2 individual.  Compared with weak consistency, strong consistency restricts how an 

individual classified as a level-1 (level-2) can respond to changes in his rival’s (own) payoff 

parameter.  This restriction is weaker than what the theory calls for, namely no response to his 

rival’s (own) payoff parameter.13 

                                                           
13 Directionally, the predicted shifts for a level-3 are the same as for a level-1, the predicted shifts for a level-4 are the 
same as for a level-2, etc.  This implies that a subject who is a consistent level-3 will be classified as strongly consistent 
with level-1, a subject who is consistent level-4 will be classified as strongly consistent with level-2, etc.  This is not 
a major issue since our focus is identifying whether subjects have a consistent depth of reasoning, not what specific 
depth of reasoning they are using.  Also, a subject who switches from being a level-1 and a level-3, for example, is 
classified as being strongly consistent with being a level-1.  This biases our approach in favor of finding consistency.   
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Table 4 displays the percentage of subjects classified as weakly/strongly consistent with 

level-1 and level-2 within a class of games, broken down by Classes 1 – 3.  The final row gives 

the percentage of subjects classified as weakly/strongly consistent with the same level for all three 

classes.  This is the highest possible level of consistency, requiring consistency across classes of 

games as well as within classes. 

[Insert Table 4 here] 

Within any given class of games, a bit more than half the subjects are weakly consistent 

with level-1.  This drops to only about a fifth of the subjects if we look at those who are strongly 

consistent with level-1.  It is striking how little these percentages vary across the three classes of 

games.    Less than a quarter of subjects are weakly consistent with level-1 for all three classes and 

only one individual out of 224 subjects is strongly consistent with level-1 for all three classes.  

Consistency with level-2 is even rarer.  For any one class of games, we see less than a fifth of the 

subjects are weakly consistent with level-2 and almost none are strongly consistent with level-2.  

Once again these percentages are similar for all three classes of games.  Only a single subject is 

weakly consistent with level-2 across all three classes of games and none is strongly consistent 

with level-2 across all three classes.   

To check whether subjects are consistent within classes but inconsistent between classes, 

we calculate how many subjects are weakly/strongly consistent with some level for all three classes 

without requiring that they be consistent with the same level for all three classes.  For example, a 

subject could be consistent with level-1 for Classes 1 and 2 and consistent with level-2 for Class 

3.  This slightly improves matters, with 30.4% of subjects weakly consistent with either level-1 or 

level-2 in all three classes.  Only a single subject is strongly consistent with either level-1 or level-

2 in all three classes. 

Classes 1 – 3 are designed to provide a direct check for consistency that does not rely on 

an econometric test.  We see little evidence that subjects are consistently level-1 or level-2.  This 

is not due to a lack of reaction in to changing the payoff parameters.  As Table 3 makes clear, on 

aggregate Classes 1 – 3 yield large changes in the expected directions in response to shifts in the 
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payoff parameters.  The problem is that individual behavior is not in line with a consistent depth 

of reasoning.14 

Table 5 provides an additional illustration of the lack of consistency.  It displays the 

distribution of experimental subjects along two dimensions of consistency.  The rows give the 

number of reactions to changing a subject’s own payoff parameter (αi) that are consistent with 

level-1 across Classes 1 – 3.  The columns give a subject’s number of reactions to changing their 

rival’s payoff parameter (αj) that are consistent with level-2 across Classes 1 – 3.  A subject has 

two opportunities to be consistent with level-1 and two opportunities to be consistent with level-2 

in each class, so these numbers range between 0 and 6.  A subject who falls in the lower left corner, 

(row 6, column 0), was always classified as responding to a change in αi in a manner consistent 

with level-1 and never classified as responding to a change in αj in a manner consistent with level-

2.  A subject who falls in the upper right corner, (row 0, column 6), was never classified as 

responding to a change in αi in a manner consistent with level-1 and always classified as 

responding to a change in αj in a manner consistent with level-2.  We report the percentage of 

experimental subjects falling into each cell.  

[Insert Table 5 here] 

If subjects used a consistent depth of reasoning across all three classes, we should observe 

the distribution concentrating in two regions: bottom-left for level-1 and upper-right for level-2.  

Table 5 shows little data in these regions, with the bulk of the observations concentrated in the 

lower center of the table.  A rectangle (highlighted in yellow) with subjects who have 3 – 6 shifts 

consistent with level-1 and 2 – 4 shifts consistent with level-2 contains slightly more than two-

thirds of the subjects.  The data does not suggest that subjects select strategies randomly, given the 

strong aggregate patterns, nor does it suggest that subjects use a consistent depth of reasoning.  

Instead, subjects appear to mix between levels. 

Result 3:  Only about a fifth of subjects are strongly consistent with a specific level within classes 

of games for Classes 1 – 3.  Virtually no subjects are consistent with a specific level across all 

three classes of games. 

                                                           
14 We learn little from analyzing consistency for Classes 4 and 5 since, as predicted, there is little response to shifts in 
the payoff parameters.  For the sake of completeness, 79% and 93% (68% and 72%) are classified as weakly consistent 
with level-1 (level-2) in Classes 4 and 5 respectively.  These figures drop to 4% and 2% (2% and 1%) for strong 
consistency with level 1 (level-2).  The high frequency of weak consistency is due to the large fraction of subjects 
who do not change their action when the payoff parameters shift.   
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4. Econometric Models:  The previous section provides descriptive evidence that most subjects’ 

choices are not in line with a consistent depth of reasoning. However, the descriptive approach 

relies upon deterministic model predictions, ignoring noise in subjects’ decision making.  This 

leaves us with a natural question: can the lack of consistency be explained by noise in subjects’ 

decisions?   

To address this question, we formulate and estimate a wide variety of structural models. 

Fitting these models has multiple purposes. First, the models incorporate noise into subjects’ 

decision-making processes, making possible to distinguish between inconsistency and stochastic 

choice. Second, we consider a large number of alternative models, including a number of variations 

suggested by the literature, and show that our consistency results are robust across different model 

specifications.  Third, we examine the effects of subjects’ cognitive ability and the payoff premium 

for greater depth of reasoning.   Finally, we demonstrate the ability of the model to predict out of 

sample and discuss what this implies for the interpretation of our results. 

This section provides a summary of how the model is constructed and the main results of 

various fitting exercises.  A full description of the technical details and additional results for 

models beyond those discussed in this section can be found in Appendix C. 

 

4.1 Baseline Model: The econometric models described in this section are finite mixture models, 

meaning we estimate the distribution of “types” (e.g. consistent level-0, consistent level-1, etc.) in 

the population but do not attempt to identify the type of any specific individual.  In addition to 

“consistent” types who use a fixed depth of reasoning across all games, the models include 

“inconsistent” types who randomize (“mix”) across different depths of reasoning.  Critically, all 

types optimize with noise.  The probability that an action is chosen is an increasing function of its 

expected payoff based on a subject’s beliefs, but all actions are chosen with positive probability.  

The econometric exercise asks whether the data is more likely to have been generated by a model 

where all subjects use a fixed depth of reasoning or a model where some subjects are inconsistent.  

In the former case, the inconsistency documented in Section 3 may be explained solely by noise 

in the optimization process while in the latter case it reflects inconsistent depth of reasoning.   

An alternative approach is to estimate a fixed depth of reasoning (level-0, level-1, etc.) for 

each individual subject for each class of games.  A subject is identified as using an inconsistent 
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depth of reasoning if his estimated depth of reasoning varies between classes of games.  However, 

this alternative approach can erroneously identify a subject as an inconsistent type if there is a 

mistake in estimating his depth of reasoning for one of the classes. To get a sense of how severe 

this problem can be, consider a population where all subjects have a fixed depth of reasoning (i.e. 

no inconsistency) split equally between level-1 and level-2.  Suppose an econometric model is 

used to identify each subject’s depth of reasoning for each of the five classes of games.  Imagine 

that identification is correct with 90% probability for each class, which is quite good.  We would 

conclude that 41% of the subjects use an inconsistent depth of reasoning when in reality there is 

no inconsistency!15 

The baseline model allows for five types of subjects: 

 

• Level-0: Subjects make choices consistent with a fixed probability distribution p0 across 

actions, where p0(x) is the probability that a level-0 type chooses action 		 ∈�110,120, … ,200�  Distribution p0 is predetermined, and does not change across different 

games either within or between classes.  The distribution across actions is uniform in the 

baseline model (p0(x) = 1/10 for all 	 ∈ �110,120,… ,200�).  The effect of using a different 

distribution of actions for level-0 types is covered in Section 4.3, our discussion of 

alternative specifications.  

• Level-1: Subjects make choices based on beliefs that all other individuals are level-0 types.  

A level-1 type’s expected payoffs depend on level-0 types’ choice probabilities p0, the class 

of games being played (C	∈ �1,2,3,4,5�), and his own payoff parameter (αi). The resulting 

probability that a level-1 type chooses action x in class C with own payoff parameter αi is 

p1
C(x|αi). 

• Level-2: Subjects make choices based on beliefs that all other individuals are level-1 types.  

A level-2 type’s expected payoffs depend on level-1 types’ choice probabilities p1
C(x|αj),16 

the class of games being played (C	∈ �1,2,3,4,5�), and her own payoff parameter (αi). The 

                                                           
15 Assuming that errors in identification are independent across classes of games, the probability that an individual’s 
depth of reasoning is correctly identified in all five classes is .95 = .59.  This yields the 41% figure in the text.   
16 Note that the level-1 types’ choice probabilities are conditioned on her rival’s payoff parameter, αj, rather than her 
own payoff parameter, αi, since, from the point of view of a level-2 type, the behavior of a level-1 type depends on 
her rival’s payoff parameter.  
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resulting probability that a level-1 type chooses action x in class C with own payoff 

parameter αi and rival payoff parameter αj is p2
C(x|αi, αj). 

• Pure-Mixing Type (Type O): Subjects randomize (“mix” ) across different levels. Pure-

mixing types act as a level-1 type with probability P
, a level-2 with probability	P, and a 

level-0 with probability 1 − P
 − P.  Both P
 and P are parameters estimated from the 

data.  Critically, a pure-mixing type is assumed to draw a new level for every game.  In 

other words, a pure-mixing type’s choices reflect twenty independent draws of one of the 

basic types (level-0, level-1, or level-2).   

• Semi-Mixing Type (Type R) This type is identical to a pure-mixing type with one important 

exception.  Rather than drawing a new level for every game, a semi-mixing type draws a 

new level for every class, but uses the same level for all games within a class.  A pure-

mixing type does not exhibit a consistent depth of reasoning either within a class of games 

or between classes of games.  A semi-mixing type is consistent within a class of games, 

but is generally not consistent between classes.  A semi-mixing type’s choices reflect five 

independent draws, one per class, of one of the basic types (level-0, level-1, or level-2).  

For simplicity, we constrain the mixing weights P
 and P to be the same for pure and 

semi-mixing types.17   

 

We incorporate noise into subjects’ decision making.  Except for level-0 types, whose 

choices are uniformly distributed over actions, all types use a logit rule.  Define G�S�!	|��, ��"	as 

a subject’s expected payoff from action x	∈ �110,120,… ,200� given his level l ∈ �1,2� and the game 

as defined by the class, C ∈ �1,2,3,4,5� and his own and rival’s payoff parameters (αi and αj).  His 

probability of choosing action x, IS�!	|��, ��", is given by Equation 7.  The parameter λ, giving 

the sensitivity of subjects to differences in expected payoffs, governs the amount of noise in 

subjects’ decisions.  If λ = 0, subjects’ choices are uniformly distributed over the ten available 

options.  As λ increases, choices become more sensitive to differences in expected payoffs.  As λ 

→ ∞, the distribution of choices converges to deterministic expected payoff maximization.  For 

the baseline model, the value of λ is assumed to be the same for all types.  

                                                           
17 See Appendix C for a variant of the baseline model that allows for different mixing weights.  This has little impacts 
on the results. 
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(7)  IS��	|��, ��� = TUVWXY�Z|[\,[L�∑ TUVWXY�^|[\,[L�^∈�//_,/`_,…,`__�	  

Parameters B
, B, Ba,	and Bb	assign weights (probabilities) in the mixture model to 

level-1, level-2, pure-mixing, and semi-mixing types respectively. A subject's chance of being a 

level-0 type equals 	BJ = 1 − B
 − B − Ba − Bb. 
For each subject, we observe a sequence of 20 choices, one for each game played.  We 

construct the likelihood of observing each 20-tuple by first calculating the likelihood for each type, 

based on the choice probabilities described above, and then using BJ, B
, B, Ba,	and Bb to 

calculate a weighted average of the likelihoods.  Note that the unit of observation is a subject’s 20-

tuple, not each individual choice in a game by a subject.  Our 224 subjects yield 224 independent 

observations, not 20 × 224 = 4480 independent observations.  Observing the sequence of choices 

allows us to separately identify the weights of the pure-mixing type and the semi-mixing type. 

Although they have the same choice distribution ex ante for any specific game, they face different 

distributions over a sequence of actions for a class of games.  We estimate the model parameters 

using a maximum likelihood approach.  

4.2 Estimation Results, Baseline Model:  Table 6 presents estimation results for the baseline model 

described above as well as two restricted versions of the baseline model.  Standard errors are 

reported in parentheses below the parameter estimates.  In addition to reporting the log-likelihood 

as a measure of goodness of fit, we also report the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC).  These measure the goodness of fit with a penalty for the 

number of parameters, with BIC imposing a larger penalty than AIC.  Lower AIC/BIC indicates 

better fit after accounting for the number of parameters.   

[Insert Table 6 here] 

Model 1 is the baseline model. Looking at the results of the baseline model, the vast 

majority of the population is identified as belonging to one of the two “inconsistent” types that 

randomize over levels (wM + wS = 0.893).  This resembles our descriptive analysis, but the formal 

econometric model picks up a much higher rate of consistency within classes of games.  After 

accounting for stochastic choice, almost half of the subjects are estimated to be consistent within 

classes but mixing their depth of reasoning across classes (i.e. semi-mixing types). 
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Model 2 does not include either of the inconsistent types (wM = wS = 0).  Comparing 

Models 1 and 2 allows us to see how the estimation results are affected by imposing consistency 

(i.e. subjects have a fixed depth of reasoning for all games). Allowing for the two inconsistent 

types improves the fit even after accounting for the four additional parameters in Model 1.  The 

estimated distribution of levels is similar for Models 1 and 2.  Model 2, which does not allow for 

inconsistency, estimates 73.5% of the population are level-1 types and 12.1% are level-2 types, 

while Model 1 implies that 59.7% of the population plays as a level-1 and 13.7% plays as a level-

2 in any given game.18  Model 2 puts more weight on level-1 but the difference is not dramatic.  

The major difference between the two models are the estimated values of λ, the parameter 

governing the amount of noise in decision making.  The value of λ is more than halved in Model 

2 as compared to Model 1, implying much more noise in subjects’ decisions.  Model 1 has no 

mechanism to directly account for subjects’ inconsistent depth of reasoning, so it attributes the 

effects of inconsistency to noise. 

Model 3 only includes the two mixing types (w0 = w1 = w2 = 0).  Note that wS = 1 – wM 

and therefore is not reported for Model 3. Given the history of the literature, it is natural to think 

of the level-k model with only consistent types (Model 2) as the default, but it is equally plausible 

to think of a model with only inconsistent types (Model 3) as the default. Comparing Models 1 

and 3 lets us see if allowing for consistent types improves the fit.   The log-likelihood is improved 

by adding consistent types but it is not clear that this is worth the cost of adding three parameters 

to the model given that the BIC is larger for Model 1 than Model 3.  The implied probability of 

playing as a level-1 or level-2 is barely affected by inclusion of consistent types,19 and the noise 

parameter λ is almost identical for Models 1 and 3. To a surprising extent, adding consistent types 

to the model has minimal effect on its explanatory power. 

 

4.3 Estimation Results, Alternative Specifications Table 7 examines three plausible alternative 

specifications to the baseline model, all of which have a basis in the existing literature.  More than 

goodness of fit, we are interested in whether alternative specifications change our main qualitative 

                                                           
18 The probability of playing as a level-1 in any given game for Model 1 is given by the probability of being a consistent 
level-1 type (w1) plus the probability of being an inconsistent type multiplied by the probability of playing as a level-
1 conditional on being an inconsistent type ((wM + wS)·θ1).  The probability of playing as a level-2 type is given by an 
analogous calculation. 
19 The implied probability of being a level-1 is 59.7% in Model 1 vs. 59.8% in Model 3.  For level-2, these figures are 
13.7% and 13.5%. 
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conclusions: the vast majority of subjects are mixing types with a large proportion of both pure 

and semi-mixing types.  Our general approach to modifying the baseline model is to add one 

feature at a time rather than fitting a kitchen sink model that adds every possible feature.  This lets 

us see the effect of added features in isolation, limits the danger of overfitting the data through use 

of a huge number of parameters, and reduces the computational demands of fitting the models. 

[Insert Table 7 here] 

 The first column of Table 7 repeats the baseline model (Model 1) as a point of comparison.  

Model 4 (“Non-Uniform Level 0”) uses an alternative specification for the choice probabilities of 

level-0 types.  A reasonable interpretation of level-0 types is that their choices are driven by non-

strategic considerations.  The most common way of specifying the choice probabilities of level-0 

types is to assume a uniform distribution over actions as in the baseline model, but the level-k 

model does not require this restriction.20  Model 4 allows for the possibility that level-0 play puts 

extra weight on other natural non-strategic concepts for how to play the games.   

All the games we consider have a “cooperative” choice, defined as the choice that 

maximizes a player’s payoffs subject to both players making identical choices.  For example, the 

cooperative choice is 200 in the imperfect price competition games.  The cooperative choice is not 

consistent with a Nash equilibrium for most of the classes and is often not efficient (in the sense 

of maximizing total payoffs across the two players) for the asymmetric games.21  All of the games 

also have a “safe” choice, defined as the maximin choice.  In the minimum coordination game, for 

example, choice of 110 maximizes the minimum possible payoff.  Model 4 lets level-0 types put 

extra weight on the cooperative and safe choices as natural non-strategic options.22  The parameter c�dde gives the added weight that level-0 types put on the cooperative choice and the parameter cbfgT gives the added weight on the safe choice.  With probability 1 – γCoop – γSafe, level-0 types 

choose using a uniform distribution.  The results indicate that level-0 types significantly 

                                                           
20 This is a central point of Arad and Rubinstein’s analysis of the 11-20 game. 
21For instance, it is easily confirmed that the cooperative choice, mutual choice of 200, is neither a Nash equilibrium 
nor surplus maximizing for the asymmetric imperfect price competition games. 
22 The cooperative choice is 200 in Classes 1 – 4 and 110 in Class 5.   The safe choice is 110 in Classes 1, 2, 3 and 5 
and 200 in Class 4.  In practice, putting extra weight on the cooperative and safe choices amounts to putting extra 
weight on the tails of the distribution.  We could do this by directly fitting a distribution (i.e. a discretized beta 
distribution) over the actions, but this runs into problems that using safe and cooperative choices avoids.  Specifically, 
if we mechanically put more weight on the two tails it implies more weight on choice of 110 in the 11 – 20 games and 
choice of 200 in the all-pay auctions.  Both of these choices are strictly dominated and virtually never chosen, causing 
the model to put artificially little weight on the tails. 
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overweight the safe choice, but not the cooperative choice.  Relaxing the uniform distribution 

assumption improves the model’s fit but has little impact on the model’s main qualitative feature 

as the percentages of pure and semi-mixing types are little changed from the baseline model. 

Model 5 implements a variant of the cognitive hierarchy (CH) model of Camerer, Ho, and 

Chong (2004).  In a standard level-k model, a level-k type assumes that the rest of the population 

consists of individuals who are one level lower (k – 1).  Therefore, a level-2 type assumes that all 

other individuals are level-1 types.  In our version of CH model, level 2 types take into account 

that both level-1 types and level-0 types exist, and use Bayes rule to generate beliefs about the 

likelihood of being matched with a level-1 type: h
 = i/j�ikjil�m/�
ni`niknil�j�ikjil��
nm`�.  This is 

slightly different from Camerer et al’s model as we are using rational expectations to generate 

beliefs rather than applying a Poisson distribution.  The CH model yields a slightly better fit to the 

data.  The overall fraction of inconsistent types is a bit higher than in the baseline model and the 

distribution is shifted toward the semi-mixing type.  The overall interpretation changes little: 

almost all subjects have an inconsistent depth of reasoning and both pure-mixing and semi-mixing 

types are common. 

 To keep the baseline model simple, we only allowed for three depths of reasoning: level-

0, level-1, and level-2.  There is ample evidence of higher depth of reasoning from other papers 

(e.g. Kneeland, 2015).  Allowing for higher depth of reasoning should have little effect on our 

descriptive analysis of consistency.  As noted previously, the pattern of shifts in response to 

changing payoff parameters should be the same for a level-3 as a level-1, the same for a level-4 as 

a level-2, etc.  However, adding higher level types should improve our ability to fit the data.  Model 

6 tests this conjecture by adding level-3 types.  Two parameters are added to the baseline model: 

w3 is the weight of consistent level-3 types and θ3 is the probability the two mixing types put on 

playing as a level-3 type.  Adding level-3 types to the model improves the fit, as expected.  The 

model detects no consistent level-3 types in the population, but the weight inconsistent types put 

on level-3 is both statistically and economically significant.  The fraction of inconsistent types (wM 

+ wS) increases slightly relatively to the baseline model, but the distribution between pure-mixing 

and semi-mixing types is almost unchanged.   

In summary, all of the alternative models find that a high frequency of inconsistent types 

is a robust feature of our empirical setting. Appendix C includes results on additional alternative 

specifications, including models that vary the mixing probabilities (i.e. θ1 and θ2) between the two 
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inconsistent types, models that vary the mixing probabilities between different classes of games, 

models with fewer inconsistent types, and models with more inconsistent types.  Our main finding 

is robust as inconsistent types are predominant in all specifications.    

 

4.4 Determinants of the Distribution of Types:  The models shown in Table 8 examine the 

determinants of subjects’ types.  The first column once again repeats the baseline model (Model 

1) as a point of comparison. 

[Insert Table 8 here] 

 We have presented ample evidence that most subjects use an inconsistent depth of 

reasoning, but this inconsistency needs not imply that the depth of reasoning is arbitrary.  Thinking 

more deeply about a game presumably requires effort, and subjects should be more willing to 

expend effort when the potential reward is larger.  We therefore expect a shift to higher levels 

when the benefits of a greater depth of reasoning are increased.  Alaoui and Penta (2016) present 

a formal model that captures this intuition as well as experimental evidence that depth of reasoning 

is sensitive to incentives.  Model 7 modifies the baseline model to see if the distribution over levels 

used by inconsistent types responds to incentives to reason more deeply about the games.   

To capture the effects of incentives, we first calculate the expected payoff for each level of 

reasoning (level-0, level-1, and level-2) in each game.  Specifically, the model generates a 

distribution over own actions as a function of the game being played and a subject’s depth of 

reasoning (level-0, level-1, or level-2).23  The population’s observed distribution of choices is used 

to generate a distribution over their rival’s actions.  Combining these, we calculate expected 

payoffs for each level.  This is done by game for pure-mixing types and by class for semi-mixing 

types.  We then calculate the payoff premium for being a level-1 (expected payoff for level-1 

minus the expected payoff for level-0) and the payoff premium for being a level-2 (expected payoff 

for level-2 minus the expected payoff for level-1).  Conditional on being an inconsistent type, the 

mixing weight of each possible depth of reasoning is a linear function of the payoff premium.  

Abusing notation, P
 = P̅
 + p
 ∙ �G�
 − G�J� where P̅
	and	p
 are parameters estimated from 

the data.  Likewise, P = P̅ + p ∙ �G� − G�
�.24 

                                                           
23 This distribution is a function of λ, but not the other estimated parameters. 
24 To make sure that P
+	P is between 0 and 1, we use a logit transformation. It follows that the mixing weights are 
not linear in payoff premiums.  For more details of Models 7 - 9 and logit transformations, see Appendix C. 
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Comparing Model 7 and Model 1, the fit is improved by allowing the distribution of levels 

to depend on the payoff premiums.  The estimates for µ1 and µ2 are both positive, indicating that 

greater payoff premiums are associated with greater depth of reasoning.  This does not imply that 

mixing disappears if the model accounts for the payoff premiums.  The distribution over levels 

generated by the fitted model puts substantial weight on multiple levels in all classes and all games.  

The weights on the various levels change as the optimization premium varies, but never approaches 

either 0% or 100%.25  The likelihood of being either inconsistent type is little changed.  In line 

with the results of Alaoui and Penta, there is a systematic relationship between depth of reasoning 

and incentives.  Inconsistent depth of reasoning does not imply arbitrary depth of reasoning. 

Models 8 and 9 examine the relationship between subjects’ reasoning ability, as measured 

by their scores on the Raven’s Progressive Matrices (RPM) test, and their depth of reasoning.  We 

expected a positive relationship based on the results of Gill and Prowse (2016).  The two models 

examine this issue in slightly different ways.  Model 8 allows the mixing probabilities (θ1 and θ2) 

for the inconsistent types to vary with the RPM score.  Model 9 lets the weight on the two 

inconsistent types (w1 and w2) vary with the RPM score, but does not allow the mixing probabilities 

(θ1 and θ2) to depend on the subject’s RPM score.  

In Model 8, θ1 and θ2 are linear functions of the subject’s RPM score.  Abusing notation, 

probability of an inconsistent type being level-1 is P
 = P̅
 + p
 ∙ uvO where P̅
	and	p
 are 

parameters estimated from the data.  Likewise, probability of being level-2 is P = P̅ + p ∙uvO.26  Comparing Model 8 and Model 1, the fit is improved by allowing the mixing probabilities 

to depend on the RPM score.  The estimates for µ1 and µ2 are both positive, indicating that greater 

reasoning ability is associated with greater depth of reasoning (albeit not significantly in the case 

of µ2).  Once again, this indicates that subjects’ levels of reasoning, while inconsistent, vary in a 

sensible and systematic fashion.  The probability of being either inconsistent type changes little. 

 Model 9 makes the weight on being an inconsistent type a linear function of the subject’s 

RPM score.  Abusing notation, wM + wS = φ + β∙ uvO where φ and β are parameters fit from the 

data.  Subject to being a mixing type, δM is the probability of being a pure-mixing type.  This 

implies that wM = wa ∙ �φ + β∙ uvO�.  Subject to not being a mixing type, δ1 and δ2 are the 

                                                           
25 To give a sense of how the weight on levels varies with as the optimization premiums change, the implied weight 
on level-1 (averaging across games) is 44%, 44%, 63%, 81%, and 59% for Classes 1 – 5 respectively.   
26 As in Model 7, we use a logit transformation of mixing probabilities in Model 8. 
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probabilities of being a consistent level-1 and level-2 type respectively.  Letting the weight on 

being a mixing type vary with the RPM score does not improve the model’s ability to fit the data 

relative to the baseline model after penalizing the model for using more parameters: both the AIC 

and BIC are higher in the modified model.  Looking at the parameter estimates, the estimate for β 

is small and does not approach statistical significance.  Going from the 10th percentile (RPM = 9) 

to the 90th percentile (RPM = 13) implies a decrease in the probability of being an inconsistent 

type from 94% to 87%.27  The likelihood of having an inconsistent depth of reasoning is 

unresponsive to RPM scores.  Taken together, Models 8 and 9 indicate that cognitive ability affects 

the depth of reasoning used by inconsistent types, but does not affect the probability of being an 

inconsistent type. 

 To summarize, almost all of our subjects are inconsistent, using different depths of 

reasoning in different games, but this inconsistency is not pure noise.  The distribution over depths 

of reasoning varies in a sensible way in response to incentives and subjects’ reasoning ability. 

 

4.4 Out-of-Sample Prediction: We have demonstrated that inconsistent depth of reasoning is a 

robust feature of the level-k model. This raises an obvious question: What are the implications of 

this finding?  Our discussion of Model 2 on Table 6 addressed the effects of failing to account for 

inconsistency on estimates of the distribution over levels.  This subsection considers the model’s 

ability to predict out of sample.  

[Insert Table 9 here] 

To do this, we fit Model 1 (the baseline model) and Model 2 (the level-k model without 

inconsistency) from Table 6 to data from Classes 2 – 5 and then use the estimated parameters to 

predict choices in Class 1 (imperfect price competition).28  Specifically, after fitting the models to 

Classes 2 – 5, we use the implied distribution over choices to generate a predicted mean and 

standard deviation for each game.  These are reported in Table 9 as well as the mean and standard 

deviation for the observed data.  Model 1 fits the data better than Model 2, but both models do a 

                                                           
27 Analogous to Model 7 and 8, a logit transformation of type weights is used in Model 9.  It follows that the type 
weights are not linear in RPM scores. 
28 The choice of Class 1 as the predicted class was arbitrary, but the qualitative conclusions do not depend on which 
class we try to predict.  
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credible job of predicting data for Class 1.  Both models have some differences from the observed 

data, but allowing for inconsistency does not meaningfully reduce these differences. 

The ability of Model 2 to predict out of sample should not be surprising.  Model 1 fits the 

data better than Model 2, because it accounts for individuals changing their depth of reasoning. 

This enables Model 1 to better capture the pattern of changes between games at the individual 

level.  However, the prediction exercise reported in Table 9 is not concerned with the pattern of 

changes between games at the individual level.  It doesn’t matter if the same subjects remain at a 

specific level across the different games. All that matters is the fraction of subjects at any particular 

level for a specific game.  Both models predict well because the distribution across levels is fairly 

stable across our five classes of game.29 

This leads to a more general point.  The level-k model that does not allow for inconsistency 

will generally work fine if all we care about is the distribution over depths of reasoning for a 

specific game.  For example, consider the Crawford and Irriberri (2007) application of a level-k 

model to the winner’s curse.  The predictions of their model are driven by the presence of players 

with different depths of reasoning.  Consistency across games does not matter in their model.  We 

should not change our interpretation of their model or experimental work just because we know 

that subjects’ types are not consistent across games. 

To summarize, inconsistent depth of reasoning is a major feature of our experimental data.  

This inconsistency is important both because it informs us about the nature of subjects’ decision 

making processes and also affects our ability to estimate parameters for a level-k model.  It does 

not imply that applications of level-k model are necessarily flawed, or that level-k models cannot 

predict out of sample.  These exercises only run into difficulty if they are impacted directly by 

inconsistency or if the inconsistency implies not only that subjects change their depths of reasoning 

but also that the distribution over levels changes across games (or classes of games). 

 

5.  Conclusions:  The primary purpose of this paper is to explore whether or not subjects employ 

a consistent depth of reasoning when playing games. Subjects play a series of games where 

consistency implies a specific pattern of responses to changes in payoff parameters. We observe 

little evidence of consistency.  This is true whether we use descriptive analysis that does not rely 

                                                           
29 This implies that if we studied classes of games where the distribution of levels varied more between classes, the 
ability of the model to predict out of sample would be diminished. 
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on any specific econometric model or take an econometric approach that accounts for noise in 

subjects’ decision making.  The lack of consistency is quite robust to a wide variety of alternative 

model specifications.  Many subjects are consistent within classes of games and only vary their 

depth of reasoning between classes of games, but a large fraction of the population also vary their 

depth of reasoning within classes of games.  This is particularly damaging to the assumption that 

subjects use a consistent depth of reasoning, as it cannot easily be explained away as subjects 

thinking differently (or expecting others to think differently) about different types of games. 

 The robust inconsistency we observe implies neither that subjects’ depth of reasoning is 

purely random nor that level-k models are not useful tools.  Depth of reasoning responds 

systematically to changes in incentives and the cognitive ability of subjects.  Even without 

accounting for inconsistency, a level-k model does well at predicting out of sample for our dataset.  

Accounting for the inconsistency is obviously important, especially when estimating parameters 

for a level-k model, but for applications that focus on the aggregate distribution of behavior, 

inconsistency at the individual level does not play a central role. 

 Ultimately, we argue that inconsistency is important not only because it affects the 

estimation of level-k model parameters, but also because it tells us something about the nature of 

subjects’ decision-making processes.  Experimenters and theorists have accepted the idea of 

stochastic choice in individual decision making (e.g. Agranov and Ortoleva, 2017).  Depth of 

reasoning is just another individual choice.  It isn’t a big step to say that random choice models 

are just as applicable here as elsewhere. 
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Figure 1: Sample Question from RPM Test

Time remaining

Question 11. From the lower part, identify the

element that is missing from the pattern of

shapes in the upper part. You have 30

seconds to answer; if not, this question will be
counted as answered incorrectly.



Figure 2: Distribution of Choices in the “11-20” Game
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Table 1: Level-K Predictions

Class 1: Imperfect Price Competition
20 80

20 L1: 110 , L2: 110 L1: 110 , L2: 160
80 L1: 170 , L2: 110 L1: 170 , L2: 160

Class 2: Minimum Coordination Game
20 80

20 L1: 180-190, L2: 180-190 L1: 180-190, L2: 120-130
80 L1: 120-130, L2: 180-190 L1: 120-130, L2: 120-130

Class 3: Traveler’s Dilemma
20 80

20 L1: 160-170, L2: 150-160 L1: 160-170 , L2: 110
80 L1: 110 , L2: 150-160 L1: 110 , L2: 110

Class 4: 11-20 Game
20 80

20 L1: 200 , L2: 190 L1: 200 , L2: 190
80 L1: 200 , L2: 190 L1: 200 , L2: 190

Class 5: All-pay Auction
20 80

20 L1: 110 , L2: 110-120 L1: 110 , L2: 110-120
80 L1: 110 , L2: 120 L1: 110 , L2: 120

Table 2: Summary of Sessions

Session # of Subjects Player 1 Player 2 Order of Classes
1 50 25 25 1/2/3/4/5
2 50 25 25 1/2/3/4/5
3 60 30 30 2/3/1/4/5
4 64 32 32 3/1/2/4/5

Total 224 112 112



Table 3: Average Choice

Class 1: Imperfect Price Competition
20 80

20 131.0 133.3
80 157.2 164.1

Class 2: Minimum Coordination Game
20 80

20 178.1 164.0
80 141.7 135.1

Class 3: Traveler’s Dilemma
20 80

20 167.7 157.2
80 134.2 129.5

Class 4: 11-20 Game
20 80

20 193.6 189.3
80 185.8 184.9

Class 5: All-pay Auction
20 80

20 112.6 112.9
80 121.5 126.3

Table 4: Weakly and Strongly Consistent Level-1 and Level-2

Class Level 1 Level 2
Strong Weak Strong Weak

1 22.32% 56.70% 1.34% 17.86%
2 16.07% 58.93% 0.89% 19.20%
3 20.54% 53.13% 3.57% 16.52%

Average 19.64% 56.25% 1.93% 17.86%
Classes 1 - 3 0.45% 23.66% 0% 0.45%



Table 5: Consistent Shifts across Classes 1 - 3

S
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Shifts Consistent with Level-2
0 1 2 3 4 5 6 Total

0 3.60% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00% 4.00%
1 0.40% 3.10% 0.00% 0.40% 0.40% 0.00% 0.00% 4.50%
2 0.00% 1.30% 2.70% 1.30% 0.40% 0.00% 0.00% 5.80%
3 0.90% 1.30% 6.30% 2.20% 1.30% 0.90% 0.00% 12.90%
4 0.00% 3.60% 6.30% 5.40% 4.90% 1.30% 0.00% 21.40%
5 0.00% 4.00% 6.70% 9.40% 5.80% 1.30% 0.40% 27.70%
6 0.40% 2.70% 6.70% 8.90% 3.60% 1.30% 0.00% 23.70%

Total 5.40% 16.50% 28.60% 27.70% 16.50% 4.90% 0.40% 100.00%

Table 6: Estimation Results of the Baseline Models

Model 1 Model 2 Model 3
Baseline Consistent Types Only Mixing Types Only

w1 0.097∗∗∗ 0.735∗∗∗ 0
(0.036) (0.039) Fixed

w2 0.000 0.121∗∗∗ 0
- (0.034) Fixed

wM 0.431∗∗∗ 0 0.434∗∗∗

(0.065) Fixed (0.016)
wS 0.462∗∗∗ 0

(0.017) Fixed
θ1 0.560∗∗∗ 0.598∗∗∗

(0.065) (0.019)
θ2 0.153∗∗∗ 0.135∗∗∗

(0.023) (0.016)
λ 0.175∗∗∗ 0.076∗∗∗ 0.172∗∗∗

(0.010) (0.002) (0.010)
Log Likelihood −8, 201.187 −8, 308.313 −8, 206.992

AIC 16, 416.375 16, 622.626 16, 421.984
BIC 16, 440.256 16, 632.861 16, 435.631

Notes: Standard errors are given in parentheses. Three (***), two (**), and one (*) stars indicate

statistical significance at the 1%, 5%, and 10% respectively.



Table 7: Comparison between Baseline and Variant Models

Model 1 Model 4 Model 5 Model 6
Non-uniform Cognitive Model with

Baseline Level 0 Hierarchy Level 3
w1 0.097∗∗∗ 0.075∗ 0.079∗∗ 0.062∗∗

(0.036) (0.041) (0.035) (0.027)
w2 0.000 0.000 0.000 0.000

- - - -
wM 0.431∗∗∗ 0.447∗∗∗ 0.283∗∗∗ 0.478∗∗∗

(0.065) (0.075) (0.062) (0.048)
wS 0.462∗∗∗ 0.463∗∗∗ 0.632∗∗∗ 0.459∗∗∗

(0.017) (0.068) (0.025) (0.050)
θ1 0.560∗∗∗ 0.595∗∗∗ 0.470∗∗∗ 0.476∗∗∗

(0.065) (0.021) (0.068) (0.022)
θ2 0.153∗∗∗ 0.117∗∗∗ 0.217∗∗∗ 0.108∗∗∗

(0.023) (0.015) (0.034) (0.016)
λ 0.175∗∗∗ 0.183∗∗∗ 0.165∗∗∗ 0.195∗∗∗

(0.010) (0.015) (0.008) (0.010)
γsafe 0.105∗∗∗

(0.011)
γcoop 0.000

-
ρ3 0.000

-
θ3 0.222∗∗∗

(0.024)
Log Likelihood −8, 201.187 −8, 097.555 −8, 192.194 −8, 117.500

AIC 16, 416.375 16, 213.109 16, 398.388 16, 253.000
BIC 16, 440.256 16, 243.814 16, 422.270 16, 283.704

Notes: Standard errors are given in parentheses. Three (***), two (**), and one (*) stars indicate

statistical significance at the 1%, 5%, and 10% respectively.



Table 8: Comparison between Baseline and Variant Models

Model 1 Model 7 Model 8 Model 9
Raven Predict Raven Predict

Baseline Exp. Payoff Mix. Prob. Mix. Type
w1 0.097∗∗∗ 0.035 0.084∗∗

(0.036) (0.032) (0.035)
w2 0.000 0.000 0.000

- - -
wM 0.431∗∗∗ 0.439∗∗∗ 0.459∗∗∗

(0.065) (0.047) (0.066)
wS 0.462∗∗∗ 0.509∗∗∗ 0.453∗∗∗

(0.017) (0.051) (0.066)
θ1 0.560∗∗∗ 0.555∗∗∗

(0.065) (0.023)
θ2 0.153∗∗∗ 0.152∗∗∗

(0.023) (0.017)
λ 0.175∗∗∗ 0.178∗∗∗ 0.179∗∗∗ 0.173∗∗∗

(0.010) (0.008) (0.011) (0.010)
θ̄1 −0.693∗∗∗ −1.023∗∗

(0.162) (0.507)
θ̄2 −2.340∗∗∗ −1.797∗∗

(0.300) (0.768)
µ1 0.064∗∗∗ 0.144∗∗∗

(0.007) (0.043)
µ2 0.201∗∗∗ 0.098

(0.021) (0.065)
δ1 0.961∗∗∗

(0.079)
δ2 0.000

-
δM 0.469∗∗∗

(0.070)
φ 4.605∗

(2.600)
β −0.211

(0.208)
Log Likelihood −8, 201.187 −8, 112.769 −8, 195.756 −8, 200.671

AIC 16, 416.375 16, 243.537 16, 409.511 16, 417.341
BIC 16, 440.256 16, 274.242 16, 440.216 16, 444.635

Notes: Standard errors are given in parentheses. Three (***), two (**), and one (*) stars indicate

statistical significance at the 1%, 5%, and 10% respectively.



Table 9: Comparison of Data Distributions to Model Distributions in Class 1

Data Consistent Types Only Baseline Model
Mean S.D. Mean S.D. Mean S.D.

LL 131.03 26.91 131.33 21.02 129.50 23.11
HH 164.06 28.86 163.00 24.42 164.67 22.48
LH 133.35 25.81 133.22 20.69 133.21 22.33
HL 157.23 30.01 161.63 25.27 161.27 25.31

Data Consistent Types Only Baseline Model
Mean S.D. Mean S.D. Mean S.D.

LL-HL -26.21 36.31 -30.29 33.05 -31.76 34.56
LH-HH -30.71 33.19 -29.78 32.75 -31.46 33.27
LL-LH -2.32 28.38 -1.89 27.17 -3.71 28.31
HL-HH -6.83 30.06 -1.38 34.97 -3.41 33.34

Notes: The parameters used for each model are estimated using data of Classes 2, 3, 4 and 5, but not

including data from Class 1.


